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COMPARISONS OF EXPERIMENTAL AND THEORETICAL
HEAT TRANSFER TO A YAWED SPHERE-CONE

MODEL AT SUPERSONIC SPEEDS

by
Lionel Pasiuk

ABSTRACT: Theoretical laminar heat transfer rates to a sphere-
cone model at angles of yaw up to 180 are compared with wind
tunnel data measured at Mach numbers of 3.2 and 4.8. Two
methods of heat transfer prediction have been chosen--the
method's of Beckwith and Vaglio-Laurin. These require that the
inviscid streamline pattern on the surface of the yawed sphere-
cone model be known. These streamlines have been calculated
from measured surface pressure distributions. The theory of
Beckwith agrees reasonably well with the, experimental data.
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Comparisons of the Experimental and Theoretical Heat Transfer
to a Yawed Sphere-Cone Model at Supersonic Speeds

This report contains the results of a project undertaken at
NOL to obtain a more complete understanding of the heat transfer
to blunt bodies at angles of yaw. Theoretical calculations of
the compressible laminar heat transfer rates to a yawed sphere-
cone model have been made, and the results are compared with
experimental measurements.
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SYMBOLS

a* speed of sound at M-1

Cp, specific heat at constant pressure

Cv :specific heat at constant volume

H stagnation enthalpy

h static enthalpy

Ii heat transfer coefficient, q

k :thermal conductivity

M Mach number

An distance between streamlines

p ;static pressure

Pr Prandtl number

qý heat transfer rate per unit area

R model base radius

Rs ,radius of spherical section of the model

S distance along a meridian on the surface of the model
measured from the point where the axis of symme,try
intersects the surface of the spherical nose

Sc value of S to the sphere-cone junction

T temperature

u velocity in the streamwise direction

v cross flow velocity

w defined by equation (3)

x,y,z coordinates of orthogonal streamline coordinate system

a angle of yaw

•CL cone half angle

v
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similarity parameter (Eq. (7))

y specific heat ratio, Cp/Cv

parameter in equation (Ib)

ew' enthaalpy gradient parameter which is a function of 0
and Tw and is tabulated in reference (8)

w, value of the enthalpy gradient parameter when 0-1

viscosity coefficient

defined in equation (la)

p density

distance along a streamline measured from the aero-
dynamic stagnation, point

roll, angle, measured from the most windward streamline

Subscripts

aw adiabatic wall condition

c at the sphere-cone junction

e conditions external to the boundary layer

o stagnation value

r some reference condition

sp stagnation point condition

w conditions at the wall

4D free stream conditions

vi
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INTRODUCTION

During atmospheric flight, high speed missiles may fly at
angles of yaw. Since the aerodynamic heat transfer is an
important factor, it is necessary to know the effects of yaw on
the heat transfer rates. These effects may be determined by
experimental or theoretical means. The purpose of this report
is to compare the results of calculated and measured values of
the laminar heat transfer distribution on a yawed sphere-cone
model.

The experimental data used for the present comparison were
obtained from measurements made at the U., S. Naval Ordnance
'Laboratory. Measurements were made at Mach numbers of 3.2 and
4.8,ý at angles of yaw of 00, 60, and 180. The results appear
in references (1) and (2).

Two theoretical solutions have been used for comparison
with the experimental data, They have been developed by
Beckwith (ref. (3)) and Vaglio-Laurin (ref. (4)). Essentially,
Beckwith has demonstrated that for small but finite cross flows
in the boundary layer the continuity equation, the streamwise
momentum equation, and the energy equation are independent of
the cross-flow velocity component when these are written in the
inviscid streamline coordinate system. These equations are
similar to the usual boundary layer equations for an axisymmetric
body. Therefore, once the streamlines external to the boundary
layer are known, any method applicable to a body of revolution
can be used to calculate the heat transfer and skin friction
over an axisymmetric body at yaw. Vaglio-Laurin used the same
considerations as Beckwith except that he made two assumptions
which simplified the calculation of the heat transfer. First,
he assumed a cold wall and used Lees' argument of reference (5)
to neglect the pressure gradient term in the boundary layer
equation. Second, he took the Mach number external to the
boundary layer to be small enough so that the recovery temperature
could be approximated by the stagnation temperature.

Now it is stated above that the inviscid streamlines are
needed in order to calculate the heat transfer. These stream-
lines were found using a method devised by Harris (ref. (6)).
This method uses the static pressure distributions on the model's
surface as input data in the solution of four differential
equations which describe the inviscid flow on the surface of
the yawed model.

Presented in this report are the results of the streamline
calculations, the heat transfer calculations, and the comparison
between the calculated and experimental heat transfer distribu-
tions.
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CALCULAT IONS

S treaml ines

In calculating the aerodynamic heat transfer rates to the
yawed sphere-cone model, one first determines the inviscid
,streamline pattern on the surface of the model and then calcu-
,lates the heat transfer along each streamline. The orthogonal
,streamline coordinate system is shown in figure 1. It is gen-
erated so that the x axis is the inviscid streamline velocity
vector projected on a plane tangent to the body's surface.
The y axis lies in the tangent plane. The quantity r is the
distance measured along a streamline from the aerodynamic
stagnation point.

The inviscid streamline pattern is found by the numerical
solution of four differential equations derived by Harris
(ref. (6)). For the spherical section of the model these are:

dS
dwS (la)

d# (1b)
("(Rs sinys)

On the surface of the cone the equations are:

- (2aa

2
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(2b)

TT W3, - ~ -~~ 4 + (2c):

V " " W 2

where

w - (S - Sc)sinac + Rs cosmc (3)

Equations (1) and (2) are derived from the inviscid momentum
equations. For a given streamline, the four dependent
variables S, *, §, and n are obtained as a function of T from
the numerical solution of equations (1) and (2) on the IBM 7090
computer. The computer program used is described in reference
(7).

As can be seen in equations (1) and (2), the values for
6p/as and 6p/i* must be known. These are found by differentiating
curve fits to the experimental pressure data found in refer-
ences (1) and (2). Other flow properties are calculated from
this static pressure data assuming an isentropic expansion of
the flow from the aerodynamic stagnation point.

The calculation for each streamline is started at some
point on a small initial circle, the center of which is at the
aerodynamic stagnation point (see fig. 1). It is assumed that
the streamline flow is radial from the stagnation point to the
initial circle. Each streamline is defined by the angle the
streamline makes with the most windward streamline at the
stagnation point.

3
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Heat Transfer

The laminar heat transfer rates are calculated from the
theories of Beckwith (ref. (3)) and Vaglio-Laurin (ref. (4)).
The equation for the beat transfer distribution given by
Beckwith is

hr Pr' r du./d j . .. '-, (4)

where E is the heat transfer coefficient. Because C varies
only about 0.3, percent for the temperature range of ?he experi-
mental data, it is taken as a constant in equation (4). The
reference point, r, of the body is taken to be the stagnation
point, sp. Since it is assumed that the flow is adiabatic along
the external streamlines, He is also constant and equation (4)
becomes

___ (5)-hsp Psp 0: (due/d¶)sp" e, sp

The terms in this equation are as follows:

Taw -- Te + Pr*(To - Te) (6)

The equation for 0 is

du SM Pe , ue(An) 2  dr (7)

P) 0 Psp

At the aerodynamic stagnation point, Or' - 0.5. The velocity
and velocity gradient are calculated from the inviscid momentum
equation in the streamline direction, and the resulting equations
are

du 1 8)
Peue

4
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and

49 + - (] (9-)Y sp ,

At the aerodynamic stagnation point, equation (8) is indeter-
minate, and the expression for the velocity gradient which is
obtained from modified Newtonian flow is,

SPsp ,(10)

The parameter 0w!Ow',ý. is a function of 8 and hw/He and can be
found in reference '(3). Finally, the term An describes the
spreading of the streamlines, and on the spherical section of
the body is taken as

An 1 R)s si (-l)

On the conical section of the body, An at a given point on a
given streamline may be found from the numerical solution to
equations (2a) to (2d). The value of An was approximated by
the normal distance from the given point to an adjacent stream-
line..

As suggested by Beckwith, the absolute level of heating
was established by using the heat transfer equation for a three-
dimensional stagnation point derived by Reshotko (ref. (9)).
For Cp - constant the equation is

hsp ~ ~ k o.p°4[p; du.I
-sp kwewPr [e- 5 ] (12)

The equation for the laminar compressible heat transfer
rates as given by Vaglio-Laurin in reference (4) is

qw " 0.47Pr-2/3 (Ho,e - Hw) Pe• ueAn (13)
[2f'PeJeue(An):2dT1]

0

5
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At the stagnation point, the limiting value of equation (13) is

(:qw)-sp 0.47P~r8(0,e - 'Hw) p2splspp~(4

For Cp- constant,
SPe

11s . (To - Tw) ued• Ps £ s-- 3 n](

lisp (Taw - TIN) 2L( t 7(n)Psp 2-sp

The viscosity ratio from Sutherland's viscosity law is

-Te3/3'/'To + 110.4) (16)
" ' Te + 110.4/'

where the temperatures are in degrees Kelvin.

Equations (5) and (15) were solved on the IBM 7090 digital
computer.

RESULTS

Streamlines

Calculations of the streamlines and heat transfer have been
made for the following six conditions:

Table 1

M PO To

1 3.2 00 1210 mm Hg 335°K
2 3.2 60 980 mm Hg 318 0K
3 3.2 180 980 mm Hg 3180K
4 4.8 00 2220 mm Hg 3200 K
5 4.8 60 2090 mm Hg 320°K
6 4.8 180 2090 mm lHg 3200 K

These are the conditions for which the experimental heat trans-
fer data are available (Tw/To varies from 0.7 to 0.8). The
experimental pressure and heat transfer data of conditions 1, 4,
and 5 were taken from reference (1), whereas the experimental
pressure and heat transfer data of conditions 2, 3, and 6 were
taken from reference (2).

6
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Each streamline calculation was started on an initial
circle with I/R-0.205. From the initial circle to the sphere-
cone junction, the streamline follows a great circle path.,

The inviscid streamline pattern over the conical section of'
the sphere-cone model is plotted on figures 2a, b, c, and d for
a.-60 and 180, and X-3.2 and 4.8. Pressure gradients along the
surface and normal to the streamline velocity vector cause the
streamlines to curve toward the low pressures. There appears to
be very little difference in the pattern of the external stream-
lines between the M-3.23 and M-4.83 at the same yaw angle. The
curvature of the streamlines at a-'18o is somewhat greater than
at M-60.

Heat Transfer

The theoretical stagnation point heat transfer coefficient,
Ks has been calculated from equations (12) and (14), and com-
paed with corresponding experimental values in Table 2 for the
six conditions listed in Table 1. The figures in parentheses
in Table 2 give the deviations from the experimental value.

Table 2

Stagnation point, heat transfer coefficient

sap, Btu/ft 2 -sec-OK

Eq. 12 Eq. 14 Experimental

1 .0257(-13%) .0236(-20%) .0295
2 .0228(-10%) .0209(-18%) .0254
3 .0228(-13%) .0209(-20%) .0263
4 .0176(+17%) .0161(+7%) .0151
5 .0170 .0156 not available
6 .0163(-17%) .0150(-23%) .0196

In general, the predictions of equations (12) and (14) are
somewhat lower than the experimental values. In the presenta-
tion of the data in figures 3 through 11, the experimental
stagnation point heat transfer coefficient was used to normalize
the experimental data.

Figures 3 through 11 show the comparison between the calcu-
lated and experimental heat transfer data. In general, the
heat transfer distributions calculated using the theory of
Beckwith (ref. (3)) are in good agreement with the experimental

ones. In the region of the stagnation point (01,<0.3), there

are some variations of the experimental heat transfer from the

7
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theory. For example, on figures 3 through 4 in the region
0O<-<0.3, the experimental heat transfer data are from 0 percent

R
to 20 percent lower than predicted by Beckwith's theory. The
experimental heat transfer distributions on the conical section
of the body for d-00 and on the most windward streamline (*,0)
of the angle of yaw data are in good agreement with the theory
of Beckwith.

Figures 6 and 7 are plots of heat transfer versus S/R for
*-45°. The experimental heat transfer data are from 0 percent
to 20 percent lower, than the theory of Beckwith on the spherical
section of the model. and on the conical section the experimental
data are from 2C percent higher to 50 percent lower than the
Beckwith theory.

Heat transfer versus # for constant values of S/R-1.018
and 1.516 are shown on figures 8 through 11. Figures 8a, 9a,
and 9b show good agreement between the experimental heat trans-
fer rates and those given by Beckwith's theory. The experimental
heat transfer rates are 13 to 20 percent lower in figure 8b,
20 percent higher in figure lOa, 20 to 35 percent lower in 9b,
up to 30 percent higher in figure lla and up to 20 percent
higher in figure lib than Beckwith's theory.

As can be seen in figures 3 through 11, the heat transfer
coefficients predicted by Vaglio-Laurin are as much as 70 percent
higher than Beckwith's values. It should be stated that the
experimental data were not obtained under the conditions of a
cold wall and low Mach numbers outside the boundary layer as
required in his theory. The experimental data were measured
with values of Tw/To between 0.7 and 0.8, and the local Mach
numbers reached values as high as 3.0. In the equation which
Vaglio-Laurin gives for the heat transfer rate, the term (To-Tw)
is used instead of the term (Taw-Tw) used iz the Beckwith heat
transfer equation. This is responsible for approximately 70
percent of the difference between the two theories. However,
the other 30 percent of the difference is due to the omission
of the effect of the pressure gradient in the Vaglio-Laurin
heat transfer equation.

Cross Flow

The factor that makes a laminar boundary layer on a yawed
sphere-cone body different than on an axisymmetric body at zero
yaw is the cross flow velocity components that exist. A sche-
matic diagram illustrating how the streamwise and cross-flow
velocity components in a three-dimensional laminar boundary
layer might look is given in figure 1.

8
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Since the theory of Beckwith is applicable when the cross-
flow velocities are small, it would be of interest to know what
the criterion for small cross-flow velocities is, whether they
exist under the conditions at which these calculations were
made, and bow large an effect they may have on the heat transfer.

The criterion for small cross flow which is given in refer-

ence (3) is (')V2 <<I. At fny particular point along the stream-
u max

line, ( ) a is the maximum value of the ratio of the cross-

flow velocity to theý streamwise velocity within the boundary

layer. Calculations of (X)x along two different streamlinesu max
have been made using the equations in reference (3). The
results are plotted in figure 12a as (!)a versus t/R for a

u max
streamline on the sphere-cone model at M-4.8, m-60 and at U=4.8,
a-18o. The locations of the two streamlines is plotted in
figure 12b and are shown as broken lines in figures 2b and 2d.

As can be seen in figure 12a, the value of (!) 2 reaches au max
maximum value of 0.3 for a=6o, whereas for m-18o, ()nax reaches

a maximum value cf 4.0. Even though the conditions for small
cross flow are exceeded for these particular calculations, the
heat transfer rates calculated using reference (3) may not
necessarily be too much in error. For example, in reference (3),
heat transfer calculations were made for a yawed infinite

cylinder, and even though the parameter (!)x went from 0 to 4,u maLx
there was no error greater than 15 percent between the small
cross-flow results and the exact heat transfer rates. In order
to determine whether the experimental data show any increase in
heat transfer rates in the regions of high cross-flow velocities,
figure 13 is presented. This figure gives a plot of the ratio
of experimental heat transfer coefficients and those from the
theory of Beckwith versus * for constant values of S/R. The
data are for the case where U=4.8, a-18o. As can be seen in
this figure, at S/R-0.65, the experimental data are slightly
lower than the theory. At S/R-I.018 and 1.267, the theory and
experiment agree rather well. But when S/R>1.267 and #>0O, the
experimental heat transfer coefficients are higher than the
theory. Now the cross-flow velocities are zero on the windward
streamline (*-0°) and on the spherical section (S/R<0.52) of
the body, whereas on the conical section, where *>0° and
S/R>0.52, the cross-flow velocities are no longer zero. Since
the scatter of the experimental heat transfer coefficients is
rather high on the conical section of the body (approximately
+ 15 percent), it is difficult to obtain qualitatively what the

9
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effect (f cross flow is on the experimental data. Nevertheless,
it is apparent from the data of figure 13 that the small cross-
flow theory of Beckwith predicts heat transfer coefficients
that are within 15 percent of the experimental values, even
though the criterion of small cross flow is not met everywhere
on, the cone.

CONCLUSIONS

A comparison has been made between the experimental and
theoretical compressible laminar heat transfer rates to a yawed
sphere-cone body. It has been demonstrated that the streamlines
on the surface of this sphere-cone body can be calculated if
the static pressure distribution on the surface of the body is
known. Heat transfer distributions along the streamlines were
calculated by applying methods given by Beckwith and Vaglio-
Laurin.

The method of Beckwith predicts compressible laminar heat
transfer distributions that are in good agreement with the
experimental values in the region of zero cross-flow velocities
and to within, approximately 15 percent in the region of high
cross-flow velocities for the range of conditions for-which
experimental data were available.,

10
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